

Supply Chain Risk and Resilience: Linking Multimodal Transportation and Global Economic Models

Presenter: Dr. Igor Linkov, Igor.Linkov@usace.army.mil

ERDC: Co-Authors: Dr. Andrew Strelzoff, Ashley Abraham, Dr. Haley Dozier, Althea Henslee, Dr. Alexandre Ligo, Steffenie Fries CATC: Hannah Walter

March 16th, 2022

US Army Corps of Engineers This presentation does not necessarily reflect the views of the United States Government, and is only the view of the author

DISCOVER | DEVELOP | DELIVER

Tab 20

Consumers ©2020 Cambridge Semantics Inc. All rights

Technical Approach

Resilient systems and networks rely on the ability to prepare, withstand, respond and adapt to evolving threats

US Army Corps of Engineers • Engineer Research and Development Center

Mathematical Framing

UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED Visualizing Interconnected Network with Subsequent Stress Testing

Long-term goal: develop tools to improve resilience of ship/port/freight operations against disruptions that cascade across different parts of the CA supply chain.

US Army Corps of Engineers • Engineer Research and Development Center

DATA: Truck Activity Monitor (TAMS) UCI Institute of Transportation Studies

TAMS Project has developed unique sensor package which provides counts of various vehicle types using "Inductive Inference". Historic data (2016-2017) being used as baseline for Causal Analysis modeling

2	MU	Single	82	Dump_Small_Basic Platform
3	MU	Single	70	Pickup/Utility_Small_Basic Platform
4	MU	Single	77	Pass Vehicle_Small_RV Trailer
5	SU	SU	2	20ft Bus
6	SU	SU	20	Platform_2
7	MU	Single	71	Pickup/Utility_Small_Livestock
8	MU	Single	86	Service_Small_Small Trailer
9	MU	Single	72	Pickup/Utility_Small_Towed Vehicle
10	MU	Single	89	Service_Small_Towed Vehicle
11	MU	Single	69	Pickup/Utility_Small_RV Trailer
12	SU	SU	5	Bobtail
13	MU	Single	73	Platform_Single_Basic Platform
14	MU	Single	85	Platform_Small_Basic Platform
15	SU	SU	7	Concrete
16	SU	SU	8	Conv. Van
17	SU	SU	9	Crane/Winch
18	SU	SU	10	Dump_Single
19	MU	Multi	32	Curtainside Van

US Army Corps of Engineers • Engineer Research and Development Center

File Name

Causal Analysis for LA Logistics Flows

TAMS Port Traffic Hourly Data

eksteringen eksterligt in belagen ander der staten in der sterne sterne staten in der staten im some

nan egeneticital estructural trader and the second statement of the second statement of the second statement of

والمراغلهم وتهر تنصرتكم وتجريا ليهوتهم وإجراكم والمحر والمراجع والمراجة للمراجع والمحر والمعر وال

Develop Al-based Model for Logistics Challenges:

- EXAMPLE: Estimating Operator Service Times directly from Sensor Vehicle Class Counts with Al-based Causal Analysis
- Are Port Congestion and Traffic Delays making Drayage Operation unviable?
- Use AI Model to evaluate Avoidance and Mitigation Strategies:
 - Key Freight corridor expansions
 - Diverting or prioritizing traffic on specific highway segments, lanes, times of day
 - Land use planning controls (e.g., incentives to expand warehouses or transloading at specific locations)
 - Investment in infrastructure of alternative modes (e.g., rail)
 - Incentives to balance variance in round-trip under stress

What is Unique about ERDC/CTC Approach:

- We lead the state-of-the-science in Integrating Logistics Models with AI and Resilience Analytics:
 - Methodology is validated through publications in top scientific journals (Nature, Science, Transportation Research)
- We have an extensive analytical understanding of Californian infrastructure and supply chains – many of our leading publications use Californian cities as case studies. Our approaches are immediately applicable to CA's needs.
- Validated through applications in different projects with DOD, DHS, DOC and other agencies
- Linkage with Global Economic Models
- Unbiased Evaluation: Federal/State Agency Execution

I-710 (Source: SCAG)

Source: Caltrans

US Army Corps of Engineers • Engineer Research and Development Center

US Army Corps of Engineers • Engineer Research and Development Center

3/14/2022

UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

12

Preliminary Results for Port-Freight System

Goal:

 Characterize major freeways and off ramps related to hourly traffic patterns, according to port-related activity and passenger traffic, and the level of stress caused.

- Tasks:
 - Collect data from multiple sources:
 Caltrans, UC Irvine, SCAG, CARB
 - Causal analysis of effect of freight traffic around the Port on traffic on locations farther on corridors.

Characterizing Different Clusters of Activity Near LA

15

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

Future Tasks

- Task 2: Gathering and preparation/imputation of incomplete historical data with CalTrans and Commission staff to develop statewide and Los Angeles multi-aspect traffic models
- Task 3: Data analytics and causal analysis for interconnected Ports and freight corridors

UNCLASSIFIED

- Task 4: Development of future scenarios and stress testing strategies
- Task 5: Resilience analytics toolkit
- Task 6: Optimization of policy decisions

Long-term goal: data-driven predictions that allow for redirecting traffic across CA.

